A transverse wave is described by the equation $y = {y_0}\sin 2\pi \left( {ft - \frac{x}{\lambda }} \right)$. The maximum particle velocity is equal to four times wave velocity if
$\lambda = \frac{{\pi {y_0}}}{4}$
$\lambda = \frac{{\pi {y_0}}}{2}$
$\lambda = \pi {y_0}$
$\lambda = 2\pi {y_0}$
Beats are produced by two waves $y_1 = a\, sin\, (1000\, \pi t)$ and $y^2 = a\, sin\, (998\, \pi t)$ The number of beats heard per second is
A closed organ pipe has length $L$ , the air in it is vibrating in third overtone with maximum amplitude $'a'$ . The amplitude at distance $\frac {L}{7}$ from closed end of the pipe is
A string of mass $2.5\, kg$ under some tension. The length of the stretched string is $20\, m$. If the transverse jerk produced at one end of the string takes $0.5\, s$ to reach the other end, tension in the string is .... $N$
The apparent frequency of a sound wave as heard by an observer is $10\%$ more than the actual frequency. If the velocity of sound in air is $330\, m/sec$, then
$(i)$ The source may be moving towards the observer with a velocity of $30\,ms^{-1}$
$(ii)$ The source may be moving towards the observer with a velocity of $33\,ms^{-1}$
$(iii)$ The observer may be moving towards the source with a velocity of $30\,ms^{-1}$
$(iv)$ The observer may be moving towards the source with a velocity of $33\,ms^{-1}$
Two identical flutes produce fundamental notes of frequency $300\,Hz$ at $27\,^oC$. If the temperature of air in one flute is increased to $31\,^oC$, the number of the beats heard per second will be